Wednesday, October 13, 2021
8:50 PM

1) Mr. Deora invested Rs. 25,000/- to purchase 2,500 units of ICICI MF on 4th April 2007. He decided to sell the units on 14th Nov. 2007 at NAV of Rs. $16.40 /$-. The exit load was 2.5%. Find his profit (Calculations are up to 2 decimal points)

Solution:
No. of units $=2500$, purchase cost of all units $=$ Rs. 25,000/-, NAVS for 1 unit = RS. 16.40, Exit load =2.5\%, Profit = ?
Selling price of 1 unit $=$ NAV - Exit Load $=16.40-(2.5 / 100) * 16.40=$ $16.40-0.41=15.99$
\therefore Sale value of all unit $=$ No. of units x Selling price of 1 unit $=2500 \times 15.99=$ Rs. 39,975
\therefore Profit on all units $=$ Sale value of all unit - Investment on all units

			$=$ Rs. $39,975-R s .25,000$
		$=$ Rs. $14,975$.	

1) If NAV was Rs. 72/- at the end of the year, with 12.5% increase during the year, find NAV at the beginning of the year.

Solution:

Let ' x ' be the NAV at the beginning of the year.
\therefore Absolute change in NAV $=12.5 \%$ of $\mathrm{x}=(12.5 / 100)^{*} \mathrm{x}=0.125 \mathrm{x}$
\therefore NAV at the end of the year $=N A V$ at the beginning of the year +
Absolute change in NAV

$$
\begin{aligned}
& =x+0.125 x \\
& =1.125 x
\end{aligned}
$$

$$
\therefore 1.125 \mathrm{x}=72
$$

$$
\therefore \quad x=72 / 1.125=64
$$

\therefore NAV's initial value was Rs. 64 /- .
2) If a mutual fund had NAV of Rs. $28 /$ - at the beginning of the year and Rs. 38/- at the end of the year, find the absolute change and the percentage change in NAV during the year .

Solution:

NAV at the beginning = Rs. 28, NAV at the end $=$ Rs. 38
\therefore Absolute change in NAV

$$
\begin{aligned}
& =(38-28) \\
& =\text { Rs. } 10 /-
\end{aligned}
$$

$\%$ change in Nav $=($ Absolute change/NAV at the beginning $) \times 100$

$$
=35.71 \%
$$

$$
=(10 / 28) \times 100
$$

3) Rohit purchased some units in open end equity fund at Rs. 16/- . The fund distributed interim dividend of Rs. $5 /$ - per unit, and the NAV of the fund at the end of the year was Rs. 25/- . Find the total percentage return. (Calculations are up to 2 decimal points)
Solution:
Total gain $=$ change in NAV + Dividend

$$
=(25-16)+5=9+5=14
$$

\therefore Total \% gain $=($ Total gain $/$ NAV at the beginning $) \times 100=(14 / 16) \times$ $100=87.5 \%$

1) Ms . Kannan purchased 113.151 units of 'FT India Prima Plus on 9th April 2007 and redeemed all the units on 7th Aug 2007 when the NAV was Rs. 35.5573 . The entry load was 2.25% and the exit load was 1%. If she gained Rs. 483.11 , find the NAV on 9th April 2007. (Calculations are up to 2 decimal points) Sola:- N10 of units $=113.151$, NAVE $=$
35.5573 . Entry bad $=2.25 \%$
n. Exit load $=1 \%$ Total gain $=483.11$, Let

$$
\begin{aligned}
& \text { ND }=\text { NAV } \\
& \quad P P \text { of } 1 \text { unit }=x+2.25 \times x=102.25 x \\
& =1.0225 x
\end{aligned}
$$

Redemption price $=$ NAV - Exit load of 1 unit $\mp \times 3$ ㅎ․ 5.5333 -

$$
=35.2017
$$

Gain on 1 unit
$=$ Redemption price

$$
\begin{aligned}
& \text { of } 1 \text { unit } \\
& =35 \cdot 2017-1.0225 x \\
& =\text { Gain on } 1 \text { unit } x
\end{aligned}
$$

NO. of units

$$
\begin{aligned}
& 483.11= \\
& (35.2017-1.0225 x) \times(13.15) \\
& 483.11 \\
& =\frac{35.2017-1.0225 n}{113.151}
\end{aligned}
$$

$$
35: 2619-1.0225 x
$$

$$
26190225 x=35.2017-4
$$

$$
1.0225 x=30.9327
$$

$$
\therefore x=30.9327
$$

100

$$
=30.25202
$$

Total Gain

1) Mona invested Rs. 2000 in a mutual fund when the NAV was Rs. 13.16 and the entry load was 2.25%. She sold all the units after 6 months at an NAV of Rs. 16.22 with 1% exit load. Find her total gain, rate of return and annualized rate of return.
Sole:- Invest $=$ Rs 2,0100, NAVP $=$ Ps $13 \cdot 16$, Entry bad $=2.25 \%$

$$
\text { NAVE }=\text { Res } 16.22 \text {, Exit load }=1 \%, T G=\text {, }
$$

$$
R O R=?, A R O R=?
$$

$P P$ of 1 unit $=N A V P+$ Entry wad

$$
\begin{aligned}
& =13 \cdot 16+2 \cdot 25 \times 13 \cdot 16=102 . \\
& 25 \times 13 \cdot 16=13 \cdot 4561
\end{aligned}
$$

Redemption $=16.22-1 \times 16.22=$
$16 \cdot 0 ' 578$
price of / unit

$$
\text { Gain on } 1=\text { Redemption } 100-P P \text { of } 1
$$

$$
\begin{aligned}
& \text { price of } 1 \text { unit } \\
= & 16.0578-13 \cdot 4561 \\
= & 2.6017 \\
= & P P \text { of } 1 \text { unit } \times \text { No. of units } \\
= & 13.4561 \times \text { no. of units }
\end{aligned}
$$

$$
\text { No of units } \frac{=2000}{13.4561}=148.631476
$$

$$
=\text { gain on } 1 \times \text { no of units }_{\text {unit }}
$$

$$
=2.6017 \times 148.631476
$$

$$
=386.694
$$

$$
\text { ROR } \quad 38 \overline{6} \cdot 696 \times 100=
$$

Investment

$$
=19.33 \%
$$

Annualized $\operatorname{ROR}=\operatorname{RCR} \times 12$ montes $=$
$19.33 \times 12=19.33 \times 2$
$\left.N_{1}\right)$ of months

$$
\text { of in= } 38.66 \%
$$

$\frac{100}{100}$
init Invt.

2000

$$
\frac{1}{2000} \times 100
$$

$$
6
$$

1) On 29th March 2017 Mr. Raju invested Rs. 5000 in an NFO of Reliance Equity Opportunities Fund Growth Plan at an NAV of Rs. 10 with no entry load. He redeemed all units on 22 nd Sept 2017 with 1% exit load and hence gained 1116.65. Find the NAV at which he redeem his units. (all figures rounded off to 4 decimal places)
Sold:- Invt $=$ RS 5000, $N A \cup P=$ RS 10 ,
Exit- load $=1 \%$,

$$
T G=R S 1116.65, \quad \text { NAVE }=\text { ? }
$$

Let Ron $=$ NAV ,
Invt $=$ NAN' \times No of um en
$5000=10 \times$ No of units
$5000=10 \times N_{0} \cdot$ of units
$\therefore N_{i} \cdot$ of units $=\frac{5000}{112}=500$ units.

Redemption price of $=$ NAV - Exit load

$$
=9 x^{-}-1+x=
$$

Gain on 1 unit $=$ Redemption price -
NA VP
on 1 unit

$$
=0.99 x-10
$$

Then of units $=$ Gain on 1 writ x

$$
\begin{aligned}
& 1116.65500(0.99 x-10) x \\
& \therefore 10.99 x-10)=1116.65= \\
& 2.2333
\end{aligned}
$$

$$
\begin{aligned}
& 500 \\
0.99 x-10 & =2.2333 \\
\therefore 0.99 x & =10+2.2333 \\
0.99 x & =12.2333 \\
\therefore x & =\frac{12.2333}{0.99} \\
& =12.3569
\end{aligned}
$$

unit
21) Ms. Suman Roy Purchased 118.413 units of "ICICI Prudential Services Industries Fund Growth" on 17/05/17 and redeemed all units on 01/11/17 when the NAV was Rs. 20.65. The entry load and exit load were 2.25% and 1% respectively. Her total gain were RS. 420.36. Find the NAV at purchase correct up to 2 decimal places.
Sols: No. of units $=118 \cdot 413$, NAVE $=$ RS 20.65 , Entry load $=2.25 \%$, Exit bond $=1 \% T G=420 \cdot 36, N A V P=$?

$$
\operatorname{Let} R s_{x}=N A V P
$$

$$
\text { PP of I unit }=\text { NAVP + Entry. Wad }=x+\frac{2.25}{100} \times x=\frac{102.25 x}{100}=1.0225 x
$$

$$
\begin{aligned}
& \text { Redemption Price }=\text { AVS }- \text { Enil-load }=20 \cdot 65-\frac{1}{100} \times 20 \cdot 65 \\
& \text { per unit }
\end{aligned}
$$

$$
=20.65-0.2069
$$

$$
=20 \cdot 4435
$$

$$
\begin{aligned}
\text { Gain on I unit }= & \text { Redemption Police }-P p \text { of } 1 \text { unit } \\
& \text { per unit }
\end{aligned}
$$

so Gain on 1 unit $=20.4435-1.0225 x$
Now total gain $=$ gain on 1 unit \times No. of ennis

$$
\begin{aligned}
\text { total gain } & =(20.44351 \cdot 0225 x) \times 118.413 \\
420.36 & =\frac{420 \cdot 36}{118 \cdot 413}=3.5499 \\
20: 4435 \cdot 1 \cdot 025 x & =\frac{20 \cdot 1435-3.5499}{1.0225}
\end{aligned}
$$

$$
=16.52185
$$

22) On 26/08/13 Mr Mishra invested Rs. 10000 in DSP NK bond Fund -dividend plan which has neither entry load nor exit load. The NAV at purchase was 42.2895 . On $15 / 12 / 13$ he received a dividend @ Rs 1.50 per unit. On 15/01/14 he redeemed the units at a NAV of 42.8314 . Find his total gain and the rate of return for the period.(number of units calculated correctly to 3 decimal places).
Sol: : NAV'P $=$ RS 42.2895 , DN on 1 un $=$ Rs 1.90, NAVE $=42.83 \mathrm{~h}$,

$$
T G=\text { ? } R O R=\text { ?, Invt }=\text { RS } 10,000
$$

$$
\text { No. of units }=\frac{\text { Invt }}{\text { NAVP }}=\frac{\text { RS } 10000}{\text { RD } 42.2895}=236 \cdot 46
$$

Gain on 1 uni $=$ DiV + (NAVS - NAVP)

$$
\begin{aligned}
& =\text { Dive (NAVS } \\
& =\text { R } 1.50+(42.8314-42.2895)
\end{aligned}
$$

$$
=\text { R } 1.50+0.5419
$$

$$
=R 2.0419
$$

$T G$
$=$ Gain on 1 unit $\times N_{0}$. of units

$$
\begin{aligned}
& =2.0419 \times 236.46 \\
& =482.827674
\end{aligned}
$$

24) Invt $=$ R 7000 , NAV $=35.5251$, Entry load $=2.25 \%$

Div fur unit $=$ RS 6 , NAOS $=32.070, T G=$?, KOR $=$?
Sols: PP of I uni $=$ NAV + Entry wad

$$
\begin{aligned}
& =\text { NAVP + Entry wad } \\
& =35.525)+\frac{2.25}{100} \times 35.5251=
\end{aligned}
$$

PP of : um t $=36.32 \mathrm{hH}$
Invt $=P P$ of 1 unit x No. of units
$7000=36.32$ ht \times No. of units

$$
\therefore \text { No of unit }=\frac{7000}{36.32 \mathrm{ht}}=192.707932
$$

$$
\begin{aligned}
& 36.324 h \\
\text { Gain on 1 unit } & =D_{1 v}+(\text { NAV }-P P \text { of } 1 \text { um it }) \\
= & 6+(32.070-36.324 h)
\end{aligned}
$$

$$
\begin{aligned}
& =\text { Div }+(\text { NAV } \\
& =6+(32.070-36.3244) \\
& =1.7456
\end{aligned}
$$

$$
=1.7456
$$

ROK
$=$ Gain on 1 unit \times No. of units

$$
=1.7456 \times 192.707932
$$

$$
=336.391
$$

$$
=\frac{T G}{\text { Invt }} \times 100
$$

$$
=\frac{336.391}{7000} \times 100
$$

$$
=4.81 \%
$$

27) Mr. Mehmood invested Rs.20,000 in 'HDFC Prudence Fund' under the dividend

Sole. $I_{\text {nut }}=$ Rs. 20,000 , NAUP $=$ RS 35.7 H 1 , Entry load $=2.25 \%$
Div per uni $=$ RS 5, Ex-div.NAV $=$ RS $28.503, n=N_{0}$ of units purchase

$$
y_{d}^{n_{d}}=\text { no of units obtained }
$$

$$
\begin{aligned}
\text { PP. of I unit } & =\text { NAUP }+ \text { Entry load } \\
& =35.741+\frac{2.25}{100} \times 35.741 \\
& =35.741+0.0225 \times 35.741 \\
& =(1+0.0225) \times 35.7 h 1 \\
& =1.0225 \times 35.741 \\
& =36.5451725
\end{aligned}
$$

Invt $=P P$ of 1 unit \times No of units (originally)

$$
\begin{aligned}
20,000 & =36.5451725 \times n \\
\therefore m & =\frac{20,000}{36.5 h 51725}
\end{aligned}
$$

Div ant. $\begin{aligned} & =D, v \text { per unit } \times \text { No. of units (originally) } \\ & =5 \text { a }\end{aligned}$

$$
\begin{aligned}
& =5 \times 547.267905 \\
& =2736.33953
\end{aligned}
$$

This Div.ant is re-invested in the mutual fund at en-div. NAV Divans $=E x \cdot \operatorname{div}$ NAV \times No. of units obtained via dividend. so $2736.33953=28.503 \times \mathrm{h} d$

$$
\therefore n d=\frac{2736 \cdot 33953}{28 \cdot 503}=96.0018079
$$

$$
\begin{aligned}
\text { Tolal no. of units } & =n+n_{d} \\
& =547.267905+96.0018079 \\
& =643.269713
\end{aligned}
$$

28) Div per unit $=$ Rs 10. (31st August 2007)

$$
\begin{aligned}
E x-\operatorname{div} N A v & =R B \cdot 69.98 . \\
& =R S 10.1
\end{aligned}
$$

Invt $=\operatorname{RS} 10,000$
NAV

$$
=\operatorname{RS} 78.04
$$

Entry load

$$
=2.25 \%
$$

n	$=?$
n_{d}	$=?$

$$
\begin{aligned}
n d & =? \\
n+n^{n} d & =? \\
\text { PP of } 1 \text { int } & =N A V P+\text { Enlory load } \\
& =78.04+0.04 \\
& =79.7959
\end{aligned}
$$

Invt

$$
10,000
$$

$$
\begin{aligned}
& =p p \text { of } 1 \text { unit } \times N 0 . \text { of units } \\
& =79.7959 \times n \\
& =10 \pi 0 n \quad=176.219
\end{aligned}
$$

$$
79.7959
$$

Div ant $=$ Div per unit \times No. of whits

$$
\begin{aligned}
& =10 \times 125.319 \\
& =R 1253.19
\end{aligned}
$$

Div ant $=E x-\operatorname{div}^{\prime}$ NAV \times No of units obtained

$$
\begin{aligned}
1253-19 & =69.98 \times n_{d} \\
\therefore h_{d} & =\frac{1253.19^{2}}{69.98}=17.9078
\end{aligned}
$$

$$
\begin{aligned}
\text { Total No of units } & =n+n_{d} \\
& =125.319+17.9078 \\
& =143.2268
\end{aligned}
$$

29) Invt- $=$ RS 10,000 , NAV $=$ RS 60.74 , Entry load $=2.25 \%$,

Dive 35% on NAV of RD LO; En-div. NAV $=52.04, n=$?, $n_{d}=$?

$$
n+n_{d}=?
$$

-ole: PP of 1 unit $=$ NAVP + Entry load

$$
\begin{aligned}
& =\text { NAVP }+ \text { Entry wad } \\
& =60.7 \mathrm{~h}+\frac{2.25}{100} \times 60.7 \mathrm{~h} \\
& =62.10665
\end{aligned}
$$

Invt
$=P P$ of 1 unit \times No of units

$$
\therefore n=\frac{10000}{62.10665}=161.013354
$$

Div

Div ant
Div. amt

$$
\begin{aligned}
& =35 \% \text { of NAN of RS } 10 \\
& =\frac{35}{10 \phi} \times 1 \phi \\
& =R^{2} 3.50
\end{aligned}
$$

$$
\begin{aligned}
& =R^{10 \phi} 3.50 \\
& =\text { Div fur unit } \times \text { No. of units }
\end{aligned}
$$

$$
=3.50 \times 161.013354
$$

$$
=563.546739
$$

$=E x-\operatorname{div}$ NAV \times No of units acquired via DN amt.

$$
\begin{aligned}
563.546739 & =52.04 \times n_{d} \\
\therefore n_{d} & =\frac{563.546739}{52.01}=10.8291072
\end{aligned}
$$

So now $n+n d=161.013354+10.8291072$

$$
=171 \cdot 8+2461
$$

30) Invt $=$ RS 7000, NAVP $=27.021$, Entry load $=2.25 \%, n=$? Div per unit $=$ RS H_{1}, Ex. div. NAV $=38.928, n_{d}=$?

NAV (as on 8103108) $=$ as 30.930 , value as on $8103108=$?

$$
T G=?
$$

Sols:PP of 1 unit $=$ MAUN + Entry load

$$
\begin{aligned}
& =27.021+\frac{2.25}{100} \times 27.021 \\
& =27.021+0.0225 \times 27.021 \\
& =(1+0.0225) \times 27.021 \\
& =1.0225 \times 27.021 \\
& =27.6289725 \\
\text { Invt } & =P P \text { of } 1 \text { unit } \times \text { No of units } \\
7000 & =27.6289725 \times n \\
\therefore n & =\frac{7000}{27.6289725}=253.357232
\end{aligned}
$$

Div.ant $=$ Div per unit \times No of units

$$
\begin{aligned}
& =4 \times 253.357232 \\
& =1013.42893
\end{aligned}
$$

Div. ant $=E x-d_{i v} \cdot N A V \times$ No. of units obtained via Div. amt.

$$
\begin{aligned}
1013.42893 & =38.928 \times h_{d} \\
\therefore h_{d} & =\frac{1013.42893}{38.928}=26.0334189
\end{aligned}
$$

value of units $=$ No.ferits \times NAV as on 8103108
as on 8103108 as on 8103108 $=(n+n d) \times 30.930$

$$
=(253.357232+26.0334189) \times 30.930
$$

$$
=(279.390651) \times 30.930
$$

$$
=8641.55284
$$

No. of units TM
31)

| Date | Transaction | Amt Invested | NAV | No. of units |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 10th Sept 2007 | Purchase | 5000 | 17.3480 | $288 \cdot 217662$ |
| 10th Oct 2007 | Purchase | 5000 | 17.4521 | $286 \cdot 498473$ |
| 10th Nov 2007 | Purchase | 5000 | 17.5647 | 2814.66185 |
| 10th Dec 2007 | Purchase | 5000 | 17.6679 | 282.999111 |
| 10th Jan 2008 | Purchase | 5000 | 17.7871 | $281 \cdot 102597$ |
| Tolar | | 25000 | | 1423.47968 |

$$
\begin{aligned}
\text { Average Acquisition cost } & =\frac{\text { Total Investment }}{\text { Total No. of unts }} \\
& =\frac{25000}{1423.47968} \\
& =17.562597
\end{aligned}
$$

$32)$

Date	Transaction	Amt. Invested	NAV	No. of Units
$7 / 08 / 2007$	Purchase	1000	18.5268	$53 \cdot 975862$
$7 / 09 / 2007$	Purchase	1000	18.6389	$53 \cdot 6512348$
$7 / 10 / 2007$	Purchase	1000	18.7575	$53 \cdot 3120085$
$7 / 11 / 2007$	Purchase	1000	18.8682	$52 \cdot 9992262$
$7 / 12 / 2007$	Purchase	1000	18.9945	52.6468188
		5000		266.58515

$$
\begin{aligned}
\text { Average Acquistion cost } & =\frac{\text { Total Investment }}{\text { Total No of units }} \\
& =\frac{5000}{266.58515} \\
& =18.7557334
\end{aligned}
$$

$$
\begin{aligned}
P P \text { of } 1 \text { mit } & =\text { NAVP }+ \text { Entry loud }=N A V P+\frac{2.25 \times N A V P}{100} \\
& =\text { NAVP }+0.0225 \times \text { NAN }=(1.0225 \times \text { NAVP }
\end{aligned}
$$

$$
\begin{aligned}
& =\text { NAVP }+ \text { ENtry load }=\frac{100}{100} \\
& =\operatorname{NAVP}+0.0225 \times \text { NAN }=\frac{1.0225 \times \text { NAVP }}{}=\operatorname{NAVP}(1+0.0225)^{2}=1
\end{aligned}
$$

Date	Transaction	Amt. Invested	NAV \boldsymbol{P}	PP of 1 unit 1.0225*D	No. of Units C/E
$10 / 7 / 2007$	Purchase	1000	44.100	45.09225	22.17676
$10 / 8 / 2007$	Purchase	1000	43.761	44.74562	22.34855
$10 / 9 / 2007$	Purchase	1000	45.455	46.47774	21.51568
Total		3000	\cdot		66.04099

Average Acquisition cost $=\frac{\text { Total Investment }}{\text { Total No of units }}$
$=\frac{3000}{66.04099}$

